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Abstract

In this paper, the variational basis for finite element analysis of elastodynamic problems has been
examined using the principle of virtual work. Using the principle of virtual work, two fundamental
important theorems on errors in variationally correct formulations in computational elastodynamics have
been discussed and illustrated with simple one-dimensional elements. A geometric interpretation of the
behavior of these errors in approximate solutions from a variationally correct formulation has been
presented using the frequency-error-hyperboloid. It has been shown that derivation of a complete and
accurate mathematical description of the nature of errors in free vibration analysis involves a simultaneous
consideration of errors in both displacement and strains. This is in sharp contrast to the error analysis in
elastostatic problems where the variational basis involves only strains.

Furthermore, it has been observed that variationally correct and conforming formulations satisfy the
projection theorems that result from the weak forms of elastodynamic problems by virtue of the virtual
work principle. These formulations involve consistent mass matrices and yield eigenfrequencies that are
always higher than the analytical values, independent of domain discretisation. This is not necessarily true
for variationally incorrect lumped mass formulations in which no guarantee of the boundedness of the
eigenvalues with respect to the exact ones can be given. With the help of sweep tests, it has been
demonstrated that the computed eigenvalues with lumped mass formulations can be higher than, equal to,
or lower than the exact values, depending on the finite element mesh.
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1. Introduction

Finite element analysis can be regarded as a tool for obtaining approximate solutions to
differential equations using piecewise assumed interpolation functions. Conventionally, the
method involves the use of element equilibrium equations derived from the basic principles of
variational calculus [1–5].

In the finite element analysis literature, it can be observed that while extensive research work
has been reported on error analysis for elastostatic problems, definitive and conclusive work on
error analysis for elastodynamic problems is relatively scanty. The best-fit paradigm of
elastostatics, emerging out of the orthogonality condition that results from the Hu–Washizu’s
theorem, has been used successfully in interpreting the mechanism of computation and in
predicting errors for finite element analysis of elastostatic problems [4,5]. In a mathematical
rigorous fashion, the best-fit paradigm has been correlated to the projection theorems of function
space algebra of elastostatics [1,4]. It has been shown how the projection theorems of function
space algebra can be utilised to derive a priori error estimates and explain the various pathological
problems of finite element analysis in elastostatics [6,7]. Recently, the virtual work principle has
been extended [8], in a physically meaningful way, to examine the various variational statements
of elastodynamic problems, derived earlier [1,4] using rigorous but abstract mathematics.

In error analysis of finite element analysis of elastodynamic problems, a posteriori approaches
have been adopted by several investigators [9–14]. Mori [4] and Tong et al. [9] have shown that the
lumped mass matrices result from using specific basis functions satisfying orthogonality
conditions with respect to mass distribution in the element domain, without disturbing the
displacement functions used for calculation of the strain energy. Strang and Fix [1] have branded
such extra-variational techniques as ‘‘variational crimes’’. Tong et al. [9] have concluded that for
uniform meshing, the convergence rate of lumped mass formulation is identical to that of the
consistent mass formulation for second-order differential equations, without addressing the
question of boundedness of the eigenvalues. Using only uniform meshing, Cook et al. [3,10,11]
have observed that lumped mass methods yield lower natural frequencies than those of the
consistent mass methods for uniform meshes, and have also recognised that no guarantee of
bounds of the eigenvalues can be given for arbitrary meshing. Fried [12] conducted a posteriori
error analysis using an error indicator that served as a measure of the relative change of an
eigenvalue for the hierarchical finite element method. Fuenmayor et al. [13] have investigated
discretisation errors and optimisation of h-adaptive process in finite element elastodynamics. They
have argued that the eigenvalue error is primarily governed by the modal strain energy error
compared to which the associated error in the modal kinetic energy is negligibly small, and
therefore has been ignored in the analysis. Wiberg et al. [14] have presented an adaptive h-version
finite element scheme to control the discretisation error in free vibration analysis. They have used
the local error estimator that reflects the difference between the superconvergent patch recovery
solution and the finite element solution with the original mesh. The strain energy distribution only
has been used as a basis for a new mesh in the adaptive procedure.

Quite recently, attempts were made to derive error convergence rates and estimates for the finite
element elastodynamics of one-dimensional elements like bar and Euler–Bernoulli beam [15] and
Timoshenko beam [16]. Here, the qualities of stiffness and mass matrices were assessed
independently using what were called the stress and momentum correspondence principles.
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Underlying the approach is the tacit assumption that stresses (strains) and velocities (momentum)
obtained through the finite element discretisation process are least square accurate approxima-
tions of the true stresses, etc. These are seen as consequences of projection theorems resulting
from the virtual work principle.

Using first principles, the present work studies how the errors in eigenvalues in elastodynamic
computations by finite element method can be interpreted. The Rayleigh quotient has been
reviewed in the light of the principle of virtual work, and the equivalent projection theorem
equation for elastodynamics has been derived. It has been shown that unlike the elastostatic
case, the best-fit paradigm is violated at a global level, and a modified expression for the
projections theorem results in elastodynamics. In elastodynamics, unlike elastostatics, the strain
energy of the error differs from the error of the strain energy. The variational statement of
Strang and Fix [1] has been re-derived using the virtual work principle. It has been shown
how the various elastodynamic variational statements, valid for the variationally correct
consistent mass formulations, are violated when lumped mass formulations are adopted. The
consequences of employing lumped mass matrices are illustrated by the sweep tests. These
show that lumped mass formulations lack the boundedness property of the eigenvalues.
The computed eigenvalues with lumped mass formulations can be higher than, equal to, or
lower than the exact values, depending on the finite element mesh. Accuracy of the consistent
mass and lumped mass solutions is decided by the finite element meshing, and no general
conclusions can be made. The simple one-dimensional linear two noded bar element has been used
to illustrate the fundamental principles that guide finite element computations in conservative or
self-adjoint problems.

The present paper also highlights the geometrical implications, in the abstract sense, of the
various error statements in computational elastodynamics. The frequency-error-hyperboloid is
shown to be a surface generated by the error norms of free vibration. The geometric implications
of the Rayleigh quotient errors for variationally correct formulations have been presented in
terms of the angles of projections for modal displacements and strains.
2. The Rayleigh quotient, the projection theorem and the energy-error rules for elastodynamics

2.1. Inner products

For the purpose of analysis, we first define two types of inner products and the norms they
describe. These inner products are global in character, and are presented as summation over Ne

elements of the complete domain of analysis.
2.1.1. Stiffness-inner product and norm

If fag and fbg are vectors each of r-rows, and ½D� is a positive definite square rigidity matrix of
size r � r; then their stiffness-inner product is defined as

ha; bi ¼
XNe

ele¼1

Z
ele

fagT½D�fbgdx (1a)
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and the stiffness-norm squared value of the vector fag is given as

kak2 ¼ ha; ai: (1b)

2.1.2. Inertia-inner product and norm
If fcg and fdg are vectors each of s-rows, and ½r� is a positive definite square inertia density

matrix of size s � s; then their inertia-inner product is defined as

ðc; dÞ ¼
XNe

ele¼1

Z
ele

fcgT½r�fdgdx (2a)

and the inertia-norm squared value of the vector fcg is given as

jcj2 ¼ ðc; cÞ: (2b)

2.2. Rayleigh quotient and the energy-error rules for elastodynamics

Free, simple harmonic vibration of a continuum in a particular normal mode with displacement
modal function uðxÞ and natural circular frequency o can be expressed as a space ðxÞ and time ðtÞ
dependent displacement function

fUðx; tÞg ¼ fuðxÞgeiot: (3)

If the approximate modal displacement function is denoted by some admissible vector fug
(satisfying the kinematic boundary conditions), and the resulting approximate modal strain vector
is feg; then the Rayleigh quotient is defined as

o2 ¼
kek2

juj2
: (4)

Here the parameter o represents the approximate value for the angular frequency (radians per sec)
corresponding to the normal mode approximated by the admissible displacement function fug:

The weak form of the classical differential equation of free vibration readily yields the following
expressions:

o2 ¼
kek
juj2

2

(5)

and

o2 ¼
he; ei
ðu; uÞ

: (6)

Here fug; feg and o are the analytical modal displacement vector, modal strain vector and the
corresponding (exact) natural circular frequency, respectively. Note that Eqs. (4) and (5) can be
obtained from the statement of the Rayleigh quotient, but Eq. (6) can be obtained only through the
virtual work principle [1,5,8]. Combining Eqs. (4) and (6), one may obtain the following expression:

he; e ei ¼ ðu;o2u  o2uÞ: (7)
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Eq. (7) is a consequence of the virtual work principle, and can be interpreted as

Total virtual work done by error of stress on approximate strain

¼ Total virtual work done by error of inertia force on approximate displacement:

Combining Eqs. (4) and (5), we get another rule

k�k2  k�k2 ¼ o2juj2  o2juj2 (8)

or

Error of global strain energy ¼ Error of global kinetic energy:

This can be interpreted as the elastodynamic energy-error rule, governing the error in energies due
to discretisation.

It will be useful also to compute the energies of the errors in strain and displacements, due to
discretisation process and to examine if a simple relationship exists between these quantities. The
energy of the strain error can be expanded as follows:

ke ek2 ¼ kek2 þ kek2  2he; ei ¼ kek2  kek2  2he; e ei: (9)

Note that for elastostatics, it has been shown earlier [1,8] that the virtual work principle can be
used to prove the following orthogonality condition:

he; e ei ¼ 0: (10a)

Thus from Eq. (8), one obtains the energy-error rule for elastostatics [5,8],

ke ek2 ¼ kek2  kek2 (10b)

i.e.

The strain energy of the error ¼ error in the strain energy:

Using the energy-error rule (Eq. (8)) and the virtual work rule (Eq. (7)), one can have from Eq. (9)

ke ek2 ¼ o2juj2  o2juj2  2ðu;o2u  o2uÞ ¼ o2juj2  2ðu;o2uÞ þ o2juj2

¼ o2juj2  2ðu;o2uÞ þ o2juj2 þ ½o2  o2�juj2

i.e.

ke ek2 ¼ o2ju  uj2 þ ½o2  o2�juj2: (11)

The above equation has been presented earlier using the weak form by Strang and Fix [5], but
with normalising the approximate displacement norm ðjuj2 ¼ 1Þ:

The error in the eigenvalue is given by the expression derived from above as

o2

o2
 1

� �
¼

ke ek2  o2ju  uj2

o2juj2
: (12)
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3. The frequency-error hyperboloid

From Eq. (11), one can derive the following equation:

ju  uj2

juj2
þ

o2

o2

ke ek2

o2juj2
¼ 1 (13a)

or

X 2

juj2
þ

Y 2

12


Z2

o2juj2
¼ 1; (13b)

where X ¼ ju  uj; Y ¼ o=o and Z ¼ ke ek: With the approximate modal displacement vector juj
arbitrarily scaled to some chosen constant, (juj2 ¼ a2; say), and noting that all norms and frequencies
are positive, Eq. (13b) can be interpreted to be the algebraic representation of the surface of the first

octant of a hyperboloid of one-sheet (Fig. 1). This will be called as a frequency-error-hyperboloid.
It can be noted that this hyperboloid intersects the Z ¼ 0 plane (or the X–Y plane) in the

quarter of an ellipse of semi-axes of magnitudes juj and 1 along X and Y axes, respectively. The
point E at the apex of this ellipse on the Y ¼ o=o axis, of coordinates ðX ¼ 0;Y ¼ o=o ¼

1;Z ¼ 0Þ represents the analysis with approximate functions replaced by exact ones. A plane
Y ¼ o=o ¼ 1 parallel to the X–Z plane (and tangential to this ellipse) through this point E
intersects this octant of the hyperboloid along a straight line EF. The equation to this straight line
EF on the Y ¼ o=o ¼ 1 plane is given by

Z ¼ oX (14a)

or

ke ek ¼ oju  uj: (14b)
1 

H 

A 

E 

F 

)( ωω =

εε −=Z

ω
ω=Y

uuX −=

Fig. 1. Geometric interpretation of eigenvalue analysis of the variationally correct formulation using frequency-error

hyperboloid. Approximate eigenvalues obtained from a variationally correct formulation lie in the shaded portion of

hyperboloid.
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For variationally correct formulations, the upper boundednesss ðoXoÞ of the Rayleigh quotient
indicates that the only feasible surface that represents real computational results is that portion of
the first octant of the hyperboloid that lies bounded by the straight line EF on one side on the
Y ¼ o=o ¼ 1 plane (given by Eq. (14)), and the hyperbola EH on the other side on the X ¼ 0
plane, given by the following equation:

o2

o2


Z2

o2juj2
¼ 1: (15)

This portion is shown as a shaded zone on the frequency-error-hyperboloid. It is now obvious that
the computationally feasible surface of this hyperboloid is enveloped by the straight line EF (Eq.
(14)) and the hyperbola EH (Eq. (15)), both originating from the critical point E. In this shaded
surface, one observes that for a given modal displacement error norm ju  uj the strain error
satisfies the condition

ke ekXoju  uj: (16)

The equality sign is valid only when exact modal functions are used in the analysis, so that all
errors vanish. Such a condition is represented by the point E which is also the limit of convergence
of finite element computation by finer discretisation.

An approximate but variationally correct formulation for elastodynamics satisfies the following
two conditions:
(a)
 The continuity of the derivatives as required by the weak form is satisfied within the element.

(b)
 The mass matrix is consistent, i.e. it is developed through the variation of the kinetic energy

used in the weak form.
Variationally incorrect formulations violate at least one of conditions (a) and (b). For such
formulations, Eqs. (6), (7) and (11) are not satisfied, and conditions (16) is not necessarily valid.
Note that for all formulations, Eq. (8) is valid always since it springs from the conservation of
energy only. Hence when consistent mass matrices are replaced by lumped ones, no guarantee of
upper bound of the exact frequency can be given. In fact, the computed approximate frequency
with lumped masses can be greater than, equal to or less than the exact frequency for the same
mode, according to the distribution of the nodal points.
4. Order of convergence of approximate finite element eigenvalues

An important question raised in evaluating the quality of a finite element formulation is
whether the convergence rate is uniformly optimal. One method to evaluate this is to plot the
convergence to zero of a suitable error norm as meshes are refined and to verify if these lines
(curves) have optimal slope [17]. It is desirable that the order of convergence be derived a priori
from first principles, as was done for example using the correspondence principles [15,16]. In what
follows, we now attempt to introduce an approach using the function space arguments and the
Rayleigh quotient to predict the optimal slope of uniform convergence for finite element
elastodynamical model.
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The energy-error rule for elastodynamics discussed by Eq. (8) clearly shows that the error in the
approximate finite element strain energy is exactly same as the error in the approximate finite
element kinetic energy. In other words the order of convergence is same for both quantities. In this
section, we shall make use of this theory to investigate the rate of convergence of the approximate
eigenvalue of free vibration problems.

Before we derive the order of convergence estimate for elastodynamics, let us review the case of
finite element elastostatics. In a finite element (i.e. the sub-domain region), the exact displacement,
strain and stress fields ðu; e; and sÞ are replaced by finite element solutions ðu; e; and sÞ: It is
known from the projection theorem [1] or alternatively from the orthogonality condition arising
from the Hu–Washizu theorem [5,15], thatZ

e

d�Tðs sÞdx ¼ 0: (17)

From this, one can proceed to demonstrate that if displacement fields u are chosen complete to
order xn (for simplicity a one-dimensional problem with x, or non-dimensional x is chosen as the
coordinate variable), so that strain (stress) fields are complete to the order xn1; then the finite
element can model actual strain (stress) field of order xn in a best-fit manner. Let

s ¼ a0 þ a1hL1ðxÞ þ a2h2L2ðxÞ þ � � � þ anhnLnðxÞ; (18)

where LnðxÞ are suitably normalised Legendre polynomials and h is the element length. This form
allows us to exploit the orthogonality condition given by Eq. (17). From Eq. (17) one can show
that

s ¼ a0 þ a1hL1ðxÞ þ a2h2L2ðxÞ þ � � � þ an1hn1Ln1ðxÞ: (19)

Thus a finite element computation produces approximate strains (stresses) which are accurate to
Oðhn

Þ: From this it is simple to show that the error of the energy (= energy of the error) is of the
Oðh2n

Þ [15].
To extend this theory to elastodynamics, one must carefully examine the energy error rule for

elastodynamics (Eq. (8)). Let us introduce the idea of generalised mass in the same equation,
where juj2 ¼ juj2 ¼ 1; then we have from Eq. (8)

ðk�k2  k�k2Þ ¼ ðo2  o2Þ: (20)

Eq. (20) clearly explains that the error in the approximate eigenvalue is still governed by the error
in the strain energy. Therefore, the order of convergence discussed earlier for the elastostatic case
is directly applicable to the approximate eigenvalue obtained from a variationally correct
formulation. In other words, the finite element eigenvalues obtained from consistent mass
formulation, o2 should have an order of convergence of the error in the strain energy, and
therefore of Oðh2n

Þ: For the linear bar element, this will mean that a consistent mass finite element
model will have a convergence of Oðh2

Þ: This will be illustrated with numerical examples in
Section 8.4.
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5. Geometric interpretation of the Rayleigh quotient error for variationally correct formulations

In this section, we show how Rayleigh quotient error for variationally correct formulations can
be interpreted geometrically using the function space approach. Using Cauchy–Schwarz
inequality theorem, one can define yu as the included angle between the displacement vectors
fug and fug and ye as the included angle between the corresponding strain vectors feg and feg; so
that

cosðyuÞ ¼
ðu; uÞ

jujjuj
; cosðyeÞ ¼

he; ei
kekkek

: (21a,b)

Thus

cos yu

cos y�
¼

ðu; uÞ

jujjuj

k�kk�k

h�; �i
¼

1

o2

k�kk�k

jujjuj
because

he; ei
ðu; uÞ

¼ o2

� �
:

Squaring both sides of the above equation, one obtains,

cos2 yu

cos2 ye
¼

1

o4

kek2kek2

juj2juj2
¼

1

o4
o2 o2 ¼

o2

o2
: (22)

Eq. (22) shows that the approximate and exact Rayleigh quotients are in the same ratio as the
squares of the cosines of the included angles yu and ye: Thus the error in the Rayleigh quotient
(eigenvalue) is determined solely by the included angles yu and ye which are given by Eqs. (21a,b),
and is independent of the actual magnitudes (norms) of the modal displacement or strain vectors,
which can be arbitrarily normalised.

For a variationally correct formulation (consistent mass), the ratio o=o exceeds unity for
arbitrary meshing. This immediately implies that yu is less than ye: Geometrically, one can
interpret this fact in the following way. The deviation of the approximate modal displacement
vector from the exact modal displacement vector is less than that of the approximate strain vector
from the exact strain vector. This is demonstrated in Fig. 2.
6. Numerical experiments to illustrate the elastodynamic error rules

In this section we shall illustrate the elastodynamic energy-error rules presented in the previous
section with some examples.

6.1. Analysis of floating bar (both ends free)

Consider a bar with both ends free (Fig. 3). The exact expressions for the modal displacement u
and natural circular frequency o for the fundamental antisymmetric mode are given by

u ¼ a sin
px

L

� �
; o ¼

ffiffiffiffiffiffiffiffi
p2E

rL2

s
;

where L is the total length of bar, E is the Young’s modulus and r is the density of the material of
the bar. Here x is measured with the bar center as the origin. The same problem has been analyzed
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using Rayleigh quotient with linear and cubic displacement functions representing approximately
the fundamental (antisymmetric) mode. The approximate displacement functions chosen should
satisfy geometric boundary condition for the antisymmetric mode,

uðx ¼ 0Þ ¼ 0:

The admissible linear and cubic displacement functions representing the first mode are taken as
u ¼ bð2x=LÞ and u ¼ bð2x=LÞ þ cððx=LÞ  4x3=L3Þ; respectively, so that the linear function
has a single generalised degree of freedom b and the cubic function has two generalised degrees of
freedom b and c. The approximate functions given above satisfy the necessary geometric
boundary conditions for the antisymmetric mode. For the cubic function, the fundamental
natural (antisymmetric) mode of the free–free bar corresponds to a specific ratio of the two
generalised degrees of freedom, ðc=b ¼ 1:076Þ; so that the admissible cubic function representing
the fundamental mode is given by

u ¼ b
2x

L
 1:076

x

L


4x3

L3

� �� �
: (23)

The results of the analysis are presented in Table 1. It can be seen that the solutions satisfy the
elastodynamic projection theorem and energy-error rule given by Eqs. (7) and (8).

6.2. Analysis of a fixed–free bar

A fixed–free bar shown in Fig. 4 has been analyzed using the exact method and using the
Rayleigh quotient method using a linear modal function. Here the geometric boundary condition
is uðx ¼ 0Þ ¼ 0; where x is measured with the left end of the bar as origin. The results for the
fundamental mode are tabulated in Table 2. It can be seen that the solutions satisfy the
elastodynamic projection theorem and energy-error rule presented in Eqs. (7) and (8).
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Table 1

Analysis results of the free–free bar using the exact and the approximate methods for the fundamental mode

Exact solutions Approximate solutions

Linear function Cubic function

Modal displacement function u ¼ a sin
px

L

� �
u ¼

2bx

L
u ¼ b

2x

L
 1:076

x

L


4x3

L3

� �� �
Modal strain

e ¼
du

dx
¼ 

p
L

a cos
px

L

� �
e ¼

du

dx
¼

2b

L
e ¼

du

dx
¼ b

2

L
 1:076

1

L


12x2

L3

� �� �
ðStrain energyÞ � 2

kek2 ¼ 4:9348
AE

L
a2 kek2 ¼ 4

AE

L
b2

kek2 ¼ 4:926
AE

L
b2

Inertia norm
juj2 ¼

4:9348

p2
ðrALÞa2 juj2 ¼

1

3
ðrALÞb2

juj2 ¼
4:926

9:875
ðrALÞb2

Eigenvalue
o2 ¼ p2 E

rL2
o2 ¼ 12

E

rL2
o2 ¼ 9:875

E

rL2

ðKinetic energyÞ � 2
o2juj2 ¼ 4:9348

AE

L
a2 o2 uj j2 ¼ 4:0

AE

L
b2 o2 uj j2 ¼ 4:926

AE

L
b2

(Error in strain energy)�2

kek2  kek2 AE

L
ð4:9348a2  4:0b2

Þ
AE

L
ð4:9348a2  4:926b2

Þ

(Error in kinetic energy)�2

o2juj2  o2juj2 AE

L
ð4:9348a2  4:0b2

Þ
AE

L
ð4:9348a2  4:926b2

Þ

he; e ei
4

AE

L
ðab  b2

Þ 4:926
AE

L
ðab  b2

Þ

ðu;o2u  o2uÞ
4

AE

L
ðab  b2

Þ 4:926
AE

L
ðab  b2

Þ

Elastodynamic projection theorem

he; e ei  ðu;o2u  o2uÞ (Eq. (7)) 0 0

Elastodynamic energy-error rule

½kek2  kek2�  ½o2juj2  o2juj2� (Eq. (8)) 0 0
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6.3. Analysis of a simply supported beam

Consider a simply supported Euler beam as shown in Fig. 5. The exact expressions for the
modal transverse displacement w and natural circular frequency o for the fundamental transverse
mode are given by

w ¼ a sin
px

L

� �
; o ¼

p2

L2

ffiffiffiffiffiffiffi
EI

rA

s
;

where L is the length of beam, A and I are the sectional area and sectional moment of inertia
of the beam, respectively. Here the coordinate x is measured with left end of the beam as origin.
The same problem has been analyzed using Rayleigh quotient with a quadratic displace-
ment function representing approximately the fundamental transverse mode. The approxi-
mate displacement functions should satisfy geometric boundary condition for the fundamental



ARTICLE IN PRESS

Table 2

Analysis results of the fixed–free bar using the exact and the approximate methods for the fundamental mode

Exact solutions Approximate solutions

Modal displacement function u ¼ a sin
px

2L

� �
u ¼

bx

L
Modal strain

� ¼
du

dx
¼

p
2L

a cos
px

2L

� �
� ¼

du

dx
¼

b

L
ðStrain energyÞ � 2

k�k2 ¼
p2

8

AE

L
a2 k�k2 ¼

AE

L
b2

Inertia norm juj2 ¼ 1
2
ðrALÞa2

juj2 ¼
1

3
ðrALÞb2

Eigenvalue
o2 ¼

p2

4

E

rL2
o2 ¼ 3

E

rL2

ðKinetic energyÞ � 2
o2juj2 ¼

p2

8

AE

L
a2 o2juj2 ¼

AE

L
b2

ðError in strain energyÞ � 2

k�k2  k�k2 AE

L

p2

8

� �
a2  b2

� �
ðError in kinetic energyÞ � 2

o2juj2  o2juj2 AE

L

p2

8

� �
a2  b2

� �
h�; � �i AE

L
ðab  b2

Þ

ðu;o2u  o2uÞ AE

L
ðab  b2

Þ

Elastodynamic projection theorem

h�; � �i  ðu;o2u  o2uÞ (Eq. (7)) 0

Elastodynamic energy-error rule

[k�k2  k�k2�  ½o2juj2  o2juj2� (Eq. (8)) 0

L 

x 

Fig. 4. Fixed–free bar.
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transverse mode,

wðx ¼ 0Þ ¼ 0 and wðx ¼ LÞ ¼ 0:

Let us choose the approximate quadratic displacement function representing the fundamental
transverse mode as w ¼ bðx=LÞð1 x=LÞ; which satisfies the geometric boundary conditions. It is
observed that the analysis results satisfy the elastodynamic error rules presented in Eqs. (7) and
(8). The results are tabulated in Table 3.
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x 
L

Fig. 5. Simply supported beam.

Table 3

Analysis results of the simply supported Euler beam using the exact and the approximate methods for the fundamental

mode

Exact solutions Approximate solution

Modal displacement function w ¼ a sin
px

L

� �
w ¼ b

x

L

� �
1

x

L

� �
Modal strain

� ¼ 
d2w

dx2

� �
¼ a

p
L

� �2

sin
px

L

� �
� ¼ 

d2w

dx2

� �
¼

2b

L2

ðStrain energyÞ � 2
k�k2 ¼

p4

2

� �
EI

L3
a2 k�k2 ¼

4EI

L3
b2

Inertia norm
juj2 ¼

1

2
ðrALÞa2 juj2 ¼

1

30
ðrALÞb2

Eigenvalue
o2 ¼ p4 EI

rAL4
o2 ¼ 120

EI

rAL4

ðKinetic energyÞ � 2
o2juj2 ¼

p4

2

� �
EI

L3
a2 o2juj2 ¼

4EI

L3
b2

ðError in strain energyÞ � 2

k�k2  k�k2 EI

L3

p4

2

� �
a2  4b2

� �
ðError in kinetic energyÞ � 2

o2juj2  o2juj2 EI

L3

p4

2

� �
a2  4b2

� �
h�; � �i

4
EI

L3
ðpab  b2

Þ

ðu;o2u  o2uÞ 4
EI

L3
ðpab  b2

Þ

Elasodynamic projection theorem

h�; � �i  ðu;o2u  o2uÞ (Eq. (7)) 0

Elastodynamic energy-error rule

½k�k2  k�k2�  ½o2juj2  o2juj2� (Eq. (8)) 0

S. Mukherjee et al. / Journal of Sound and Vibration 285 (2005) 615–635 627
7. Consistent mass versus lumped mass in finite element analysis for elastodynamic problems

For computational efficiency, engineers often employ the lumped mass technique, which
effectively replaces the consistent (non-diagonal) mass matrices by lumped (diagonal) mass
matrices. The present section examines the variational correctness of finite element results for
elastodynamic analysis using these different methodologies.
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The weak form of the elastodynamic differential equation yields a mass matrix ½Mce� from the
inner product with the approximate modal function in the following manner:

ðu; uÞ ¼
X

e

Z
e

fugTrfugdV

¼
X

e

fde
gT

Z
e

½N�Tr½N�dVfde
g

¼
X

e

fde
gT½M�cefde

g; ð24Þ

where ½N� is the shape function matrix for the approximate modal displacement function in an
element e and fug ¼ ½N�fde

g; where fde
g is the nodal displacement vector for the element. The

consistent mass matrix is given by

½Mce� ¼

Z
e

½N�Tr½N�dV : (25)

If the mass matrix is computed according to Eq. (24), then the elastodynamic error Eqs. (12) and
(13a,b) are satisfied, since it is consistent with the weak form of the elastodynamic differential
equation.

However, for computational convenience, engineers often use the lumped mass matrix instead
of the consistent one. In a lumped mass matrix, all the off-diagonal elements are set equal to zero,
and the masses are lumped only in the diagonal elements of the matrix. With the lumped mass
matrix, the inner product of Eq. (23) is replaced by the expressionX

e

fde�
gT½Mle�fde�

g ¼
X

e

X
i

me
i ðd

e�
i Þ

2; (26)

where me
i is the mass associated for the ith diagonal term for the lumped mass matrix ½Mle� for the

element e. The term de�
i denotes the ith displacement component of the displacement vector fde�

i g

for the lumped mass case. Using the lumped mass formulation effectively replaces Eq. (4) by

ðe�; e�Þ ¼ ðo�Þ
2:
X

e

X
i

me
i ðd

e�
i Þ

2; (27)

where the approximate modal displacement function for the lumped mass in an element is given
by fu�g ¼ ½N�fde�

g and the corresponding eigenvalue is ðo�Þ
2: If fug and ðoÞ2 are replaced by fu�g

and ðo�Þ
2 then Eqs. (7), (8) and (11) are violated. In other words, elastodynamic results of finite

element analysis with the lumped mass matrices are variationally incorrect. However, from the
principle of conservation of energy, a modified energy error rule, given below is satisfied by the
lumped mass formulations.

k�k2  k��k2 ¼ o2juj2  ðo�Þ
2
X

e

X
i

me
i ðd

e�
i Þ

2: (28)

Note that the inner product ju�j2 of Eq. (8) is replaced by Eq. (26).
A variationally correct finite element formulation for elastodynamics with consistent mass

matrix always yields eigenvalues (natural frequencies) higher than those obtained by analytical
methods for arbitrary meshing. This is not necessarily true if lumped mass formulation is
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employed. In fact, lumped mass analysis can yield eigenvalues which are either lower than, or
higher than, or equal to the exact eigenvalue according to the position of the nodes. This is
illustrated with numerical examples in the next section.
8. Numerical experiments with the linear bar element

8.1. Element displacement and stiffness

Consider the linear two noded bar element shown in Fig. 6. The approximate modal
displacement u is given by linear interpolation function as

u ¼ N1u1 þ N2u2 where N1 ¼ 1
x

l

� �
and N2 ¼

x

l

� �
: (29)

Here l is the element length and x is measured with the left end of the element as origin, and ui is
the nodal displacement vector at node i. The modal strain–displacement relation is given as

feg ¼
du

dx

� �
¼ 

1

l

1

l

� �
u1

u2

( )
¼ ½B�fde

g;

where [B] is the modal-strain displacement matrix and fde
g ¼ ½u1 u2�

T is the element nodal
displacement vector. The element rigidity matrix is ½D� ¼ EA where A is the sectional area and E is
the Young’s modulus of the material. The element stiffness matrix is given by

½ke
� ¼

Z l

x¼0

½B�T½D�½B�dx ¼
AE

l

1 1

1 1

� �
: (30)

8.2. Consistent mass formulation

When the mass matrix is constructed so that it is consistent with the weak form and the
displacement approximation, it is referred to as consistent mass matrix. The consistent mass
matrix for the linear bar element it is given by Eq. (24) as

½Mce� ¼
rAl

6

2 1

1 2

� �
: (31)
2
u1

u

l 
1 2 

Fig. 6. Two noded linear bar element.
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8.3. Lumped mass formulation

The lumped mass matrix is formulated by lumping of mass at the element nodes. This produces
a diagonal mass matrix. For the linear bar element the lumped mass matrix is given by

½Mle� ¼
rAl

2

1 0

0 1

� �
: (32)

Mass lumping greatly simplifies matrix calculation involving the extraction of eigenvalues.
8.4. Frequency analysis

A fixed–fixed bar has been analyzed with different types of discretisations (with uniform and
varying element lengths) using consistent and lumped mass matrices. Figs. 7 and 8 show the
discretisation schemes using two and three bar elements.

The results of the analysis are graphically presented in Figs. 9 and 10. It can be observed that
the approximate eigenvalues for a given mode using the consistent mass matrix are always higher
than the exact eigenvalue of the respective mode for all kinds of meshing. In other words, the
exact eigenvalue forms the lower bound of the sequence of approximate eigenvalues using
consistent mass formulation. This is a fact which is independent of the discretisation schemes.
This confirms what we had projected from the frequency-error-hyperboloid earlier.

However, with lumped mass formulation, the discretisation decides whether the approximate
eigenvalues will be lower than or higher than the exact eigenvalue. In fact, for some critical
discretisation, the approximate eigenvalue can even be equal to the exact one, as indicated by the
intersecting points A and B in Figs. 9 and 10.

Thus when the lumped mass matrix is used, the guarantee of obtaining upper bounds to the
exact eigenfrequencies of the structure is lost; in some particular cases, it is possible to show that
the eigenfrequencies will be underestimated, but no proof of it can be given in general.
L 

Fig. 7. Element discretisation details (2-element case).

(1- 2 α )L α Lα L

L 

Fig. 8. Element discretisation details (3-element case).
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While it is generally true that consistent mass formulations yield eigenfrequencies higher than
the exact value, it has been observed that for the present problem, analysis with the lumped mass
formulation employing equal length elements, yields approximate eigenfrequencies which are
lower than the exact value. The convergence trend of the errors in the eigenvalues with increasing
number of equal length elements N is shown in Fig. 11. The error in the eigenvalue is defined as,
e ¼ ððo2=o2Þ  1Þ; where o2 is the exact eigenvalue and o2 is the approximate finite element
eigenvalue. For consistent mass analysis the error e always turns out to be a small positive number
but for lumped mass analysis it can be positive, negative or zero. Therefore, for the purpose of
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obtaining the convergence graph we used only the modulus of the error e. It is seen that, as
discussed in Section 4, the error has an order of convergence of Oðh2

Þ; where h ¼ L=N is the
element length. Here L is the total length of bar and N is the number of elements.

We see from Fig. 11 that the errors for an equal length element mesh from the consistent and
lumped mass formulations are nearly exactly equal in magnitude but opposite in sign. One can
envisage a physical picture where the lumped mass case is equivalent to a formulation where the
discretisation of the mass (or inertia) properties leads to a heavier configuration than the
consistent mass case. Thus while both cases show a second-order convergence rate, it is possible to
manipulate the mass matrix such that the errors of the order of h2 canceled out, giving a fourth-
order (i.e. Oðh4

Þ) accuracy. This is in fact the basis of higher-order mass of Goudreau [18], where
the new mass matrix is obtained as the average of the lumped and consistent mass matrices, i.e.
½Mhe� ¼ 1

2
f½Mce� þ ½Mle�g:

8.5. Illustration of the energy-error rule and projection theorem

It is interesting to examine whether the lumped mass formulations conserve the relationships
described by the elastodynamic energy-error rules and projection theorems. Table 4 tabulates
these quantities for the equal length two and three element solutions for consistent mass and
Table 5 repeats these for lumped mass. It is very clearly seen that due to the extra variational
nature of the lumped mass formulation, the mass became ‘‘heavier’’ (compare the third rows
(inertia norm) in Tables 4 and 5). Even then, from the principle of conservation of energy the
lumped mass formulations satisfy the modified elastodynamic energy-error rule (Eq. (27)). But it
will be meaningless to talk of a projection theorem for the variationally incorrect lumped mass
formulations because, the inertia-inner product is now mixed with continuous (exact solution) and
discrete (lumped mass solution) functions. These arguments are confirmed with the algebraic
expressions presented in Tables 4 and 5.

The parameters a and b present in the expressions of Tables 4 and 5 are the amplitudes of the
exact and approximate finite element solutions, respectively.
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Table 4

Analysis results for the fixed–fixed bar with exact solution and with two and three equal length bar elements using the

consistent mass formulation for the fundamental mode

Exact solution Approximate finite element solutions

2-element solution 3-element solution

(Strain energy)�2
kek2 ¼ 4:9348

AE

L
a2 kek2 ¼ 4

AE

L
b2

kek2 ¼ 4:5
AE

L
b2

Inertia norm
juj2 ¼

4:9348

p2
ðrALÞa2 juj2 ¼

1

3
ðrALÞb2

juj2 ¼
4:5

10:8
ðrALÞb2

Eigenvalue
o2 ¼ p2 E

rL2
o2 ¼ 12

E

rL2
o2 ¼ 10:8

E

rL2

(Kinetic energy)�2
o2juj2 ¼ 4:9348

AE

L
a2 o2juj2 ¼ 4

AE

L
b2 o2juj2 ¼ 4:5

AE

L
b2

(Error in strain energy)�2

kek2  kek2 AE

L
ð4:9348a2  4b2

Þ
AE

L
ð4:9348a2  4:5b2

Þ

(Error in kinetic energy)�2

o2juj2  o2juj2 AE

L
ð4:9348a2  4b2

Þ
AE

L
ð4:9348a2  4:5b2

Þ

he; e ei
4

AE

L
ðab  b2

Þ 4:5
AE

L
ðab  b2

Þ

ðu;o2u  o2uÞ
4

AE

L
ðab  b2

Þ 4:5
AE

L
ðab  b2

Þ

Elastodynamic projection theorem 0 0

he; e ei  ðu;o2u  o2uÞ (Eq. (7))

Elastodynamic energy-error rule 0 0

½kek2  kek2�  ½o2juj2  o2juj2� (Eq. (8))
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9. Conclusion

An energy-error rule and the projection theorems have been derived using the variational (weak
form) approach of Strang and Fix [5] for the elastodynamic problems. It has been demonstrated
with numerical examples that a variationally correct formulation (consistent mass) always satisfies
these theorems but any extra-variational formulation (lumped mass) violates these. The effect of
replacing consistent mass by lumped mass has been critically examined.

Using the frequency-error hyperboloid, an attempt has been made to present a geometric
interpretation for the errors associated in the computations of eigenfrequencies of structural
mechanics problems with variationally correct formulations. For variationally incorrect
formulations, such a rule is violated. Furthermore, the geometric significance of the upper
bound of the Rayleigh quotient for variationally correct formulations has been shown in terms of
included angles between exact and approximate modal solutions. The guarantee of upper bound is
lost when a lumped mass is used; this fact has been illustrated with numerical examples using the
two noded linear bar element.
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Table 5

Analysis results for the fixed–fixed bar with exact solution and with two and three equal length bar elements using the lumped mass formulation for

the fundamental mode

Exact solution Approximate finite element solutions

2-element solution 3-element solution

(Strain energy)�2
kek2 ¼ 4:9348

AE

L
a2 ke�k2 ¼ 4

AE

L
b2

ke�k2 ¼ 4:5
AE

L
b2

Inertia norm
juj2 ¼

4:9348

p2
ðrALÞa2 P

e

P
i

me
i ðd

i�
e Þ

2
¼

1

2
ðrALÞb2 P

e

P
i

me
i ðd

i�
e Þ

2
¼

1

2
ðrALÞb2

Inertia norm as per Eq. (2a)
juj2 ¼

1

3
ðrALÞb2 juj2 ¼

5

12
ðrALÞb2

Eigenvalue
o2 ¼ p2 E

rL2
ðo�Þ

2
¼ 8

E

rL2
ðo�Þ

2
¼ 9

E

rL2

(Kinetic energy)�2
o2juj2 ¼ 4:9348

AE

L
a2 ðo�Þ

2 P
e

P
i

me
i ðd

e�
i Þ

2
¼ 4

AE

L
b2

ðo�Þ
2 P

e

P
i

me
i ðd

e�
i Þ

2
¼ 4:5

AE

L
b2

(Error in strain energy)�2

kek2  ke�k2
AE

L
ð4:9348a2  4:0b2

Þ
AE

L
ð4:9348a2  4:5b2

Þ

(Error in kinetic energy)�2

o2juj2  ðo�Þ
2 P

e

P
i

me
i ðd

e�
i Þ

2

AE

L
ð4:9348a2  4:0b2

Þ
AE

L
ð4:9348a2  4:5b2

Þ

he�; e e�i
4

AE

L
ðab  b2

Þ 4:5
AE

L
ðab  b2

Þ

kek2  ke�k2  ½o2juj2  ðo�Þ
2 P

e

P
i

me
i ðd

e�
i Þ

2] 0 0

(Eq. (28))
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